
The liquid and gas flow algorithm used in LDAT 

Summary: 

The LDAT landfill degradation and transport model contains a liquid and gas flow sub-model. The 

following is a description of the LDAT liquid and gas flow algorithm, which is the calculation 

procedure that LDAT uses to solve the landfill process analytical constitutive equations. This is a 

finite difference algorithm that operates upon a framework of rectangular representative elementary 

landfill waste volumes. 

Multi-phase multi-component landfill processes models are used to support the design of landfill 

management and engineering systems that implement leachate flushing /recirculation, aeration, and 

gas extraction and collection. These models have the capability to represent the multi-component two 

phase flow of liquid and gas through the pore space of the solid phase of the waste material. 

The constitutive equation is the implementation of Darcy’s Law which relates flow of liquid and gas 

to pressure gradients and permeability in unsaturated porous materials. The permeability to liquid and 

gas in saturated waste are obtained using the Powrie and Beaven permeability model that relates them 

to effective stress. The relative permeability of unsaturated material is obtained using the van 

Genuchten equation that relates relative permeability to the effective degree of saturation. 

The solution of the constitutive equation requires the estimation of the pore space capillary pressure 

which connects the liquid and gas pressure fields. This is achieved by using the van Genuchten 

equation that relates capillary pressure to the effective degree of saturation. 

The solution also requires a connection to be made between the solid phase of the waste and the liquid 

and gas phases. This is achieved using the Powrie and Beaven dry density (porosity) model that 

relates them to the effective stress. 

Full details of the Darcy, Powrie and Beaven and van Genuchten equations are provided, together 

with the derivation of the LDAT numerical solution algorithm. 

1. Introduction 

Multi-phase multi-component landfill processes models have a role in supporting the design of 

landfill management and engineering systems that implement leachate flushing /recirculation, 

aeration, and gas extraction and collection. There is a requirement for such models to have the 

capability to represent the multi-component two phase flow of liquid and gas through the pore space 

of the solid phase of the waste material. 

This following describes the liquid and gas flow algorithm of the landfill degradation and transport 

model LDAT. The algorithm has been significantly refined since it was first published, (White et al. 

2004), and now accommodates unsaturated flow which includes a multi-component gas flow phase. 



LDAT is a general model of landfill processes consisting of a set of linked process sub-models. Each 

process sub-model references the same set of Primary Variables, which are sufficient to specify the 

state of the waste at any point in time and space. All other variables, the Secondary Variables, 

required by a sub-model are derived from the Primary Variables using a set of common constants and 

empirical relationships. Examples of Secondary Variables include density and permeability. 

In the case of LDAT the Primary Variables are the mass of each chemical compound in each of the 

solid, liquid and gas phases 
P

nm , together with the stresses applied to those phases. The stresses are 

the total stress applied to the solid phase,  , the liquid and gas pressures, Lp  and Gp , and 

temperature T . (White and Beaven 2013). 

The sub-models together effectively solve the constitutive equations of landfill waste degradation and 

transport within the framework of a finite difference grid that represents the landfill spatially. 

The source term of the constitutive equation is arranged to accommodate degradation, gas solubility, 

gas diffusion, and the impact of temperature changes due to heat generation and transfer. The 

remainder of the equation is decoupled from the solid phase terms which form the basis of the 

settlement sub-model, with liquid/gas phase transport calculated in a sub-model as described in 

Sections 2 and 3.  

Following the description of the LDAT degradation algorithm given in (White and Beaven 2013), the 

aim of this paper is to provide details of the LDAT flow algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Notation 

C  Subscript denoting capillary pressure see equation (16)  

E  Subscript denoting ‘effective’  

e  Subscript indexing finite difference element see Figure 1 

and Note 1 below. 

 

m  Subscript indexing elements neighbouring e , see Figure 

1 and Note 1 below 

 

n  Subscript indexing component  

REF  Subscript denoting reference value  

REL  Subscript denoting relative value  

vh  Subscript denoting vertical to horizontal ratio  

D  Superscript denoting dry density see equation (17)  

G  Superscript denoting gas phase  

L  Superscript denoting liquid phase  

MAX  Superscript denoting maximum value  

MIN  Superscript denoting maximum value  

P  Superscript denoting phase. Liquid phase LP  , Gas 

phase LP  , Solid phase SP   

 

R  Superscript denoting residual value  

S  Superscript denoting solid phase  

A  Area  m2 

a  See equation (27) m3/kPa 

B  Right hand side of solution matrix, see equation(34) m3 

b  See equations (28) and (29) m3 

C  Left hand side of solution matrix, see equation(35) m3/kPa 

c  See equation(31) m3 

d  Element dimension m 

G  Source flow concentration m3/(day.m3) 



g  Acceleration due to gravity kN/kg 

h  Pressure head m 

i  Column index in solution matrix  

J  Mass transmissivity, see equation (20) kg/(day.m) 

Kk,  Permeability m/day 

l  absolute value of distance between element centres m 

M  Mass transfer kg 

m  Mass kg 

p  Pressure kPa 

Q  Volume transfer m3 

S  Storage coefficient 1/kPa 

S  Volumetric storage coefficient, see equation (31) m3/kPa 

T  Temperature oC, oK 

t  Time day 

V  Volume m3 

v  Component flow velocity m/day 

x  Coordinate m 

z  Concentration  

  See equation (16) m3/m3 

  See equation (16) m-1 

  See equations (8) and (9)  

  See equations (14) and (15)  

  Porosity  

  See equations (8), (9) and (16)  

  See equation (5)  

  See equation (17)  



  Viscosity kPa.day 

  Moisture content  

  Density kg/m3 

  Total stress kPa 

0  Surface stress kPa 

   Effective stress kPa 

  Degree of saturation  

  See equation(15)  

  See equation(22) m2 

 



2. The LDAT liquid and gas flow constitutive equations 

The bio-chemical and physical processes that take place in a waste landfill may be represented 

analytically by a set of algebraic constitutive equations. The solution of these equations may be 

obtained numerically by re-casting them as a calculation procedure, or algorithm. This section 

describes the constitutive equations and algorithm that may be used to represent the flow of the liquid 

and gas phases in the waste material. These are based on those used in the landfill degradation and 

transport model LDAT (White et al. 2004, White and Beaven 2013) which in turn have been derived 

from a range of sources including (Darcy 1856, Bear 1979, Bear and Verruijt 1992, Ghabaee and 

Rodwell 1989, Das 1983, Droste 1997, Moody et al. 1992, Hydrogeologic 1996, McDonald and 

Harbaugh 1988, Bente 2011). 

LDAT solves the landfill process constitutive equations using a finite difference algorithm within a 

framework of rectangular representative elementary volumes. The framework for the finite difference 

algorithm is a three dimensional rectangular element e  as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Finite difference three dimensional rectangular element. 

Note: Each element has a number, in this case e. There are six interfaces with neighbouring 

elements. The interfaces are designated by the integer m = 1 to 6. The number of a neighbouring 

element i is obtained from an array mapping function i = array_map(e, m). 

The space occupied by the waste material in the landfill is represented by a three dimensional array of 

these elements. Each element is surrounded by six neighbouring elements some of which may be 

interface em

Element e

Neighbouring 
elements m = 1 to 6



boundary elements. The array of six neighbouring elements is indexed by m  1 to 6, Figure 1. The 

suffix em  attached to a variable denotes that the variable is evaluated at the interface between the 

element and its neighbour m . In the case of vectors it also denotes direction, which is positive in the 

outward direction normal to the interface. A single suffix e  attached to a variable denotes that the 

variable is evaluated at the centroid of element e . 

The waste material is represented as the assembly of a number of component chemical compounds 

and species (chemical elements), each of which can exist in one or all of the three phases solid, liquid, 

and gas. The conservation of the mass e

P

ne

P

ne

P

ne Vzm ,,,  of the n th component of the waste in phase P  

(solid, liquid or gas) in the context of a representative elementary volume, 
eV , may be expressed by 

the following equation, 
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For the gas and liquid phases 
P

nemv ,  is the interstitial flow velocity (m/day) of component n . For the 

solid phase it represents the solid particle displacement velocity. 
P

neG ,  is the source term (m3/day/m3) 

associated with component n  in phase P . 
P

nem ,  is the component density and 
nemA ,

 is the area 

associated with the flow or displacement velocity 
P

nemv , . The mass of component n  in phase P  can be 

expressed as e

P

ne

P

ne

P

ne Vzm ,,,   where 
P

nemz ,  is the component volumetric concentration or volume 

fraction (m3/m3). 

The mass of a component 
P

nem ,  is the key parameter that LDAT calculates and tracks through time and 

space. 

In the process of solving equation (1), which ensures that mass is balanced, the condition 1, 
n

P

nez  

is applied to preserve volumetric consistency. Therefore, in order to be able to apply this condition, 

P

nem ,  in equation (1) is replaced by e
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Since changes in density are due to compression or expansion accompanying changes in pressure, the 

term 
t

z P
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P
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 where 
P

ep  is the phase 

pressure and 
P

neS ,  is a storage coefficient with units 1/kPa. For the liquid and solid phases the storage 



coefficient is equal to the reciprocal of the respective bulk moduli and, for the gas phase, 
G

neS ,  is 

obtained from the gas law. 

The individual concentrations of the compounds 
P

nez ,  are related to the overall concentrations of the 

solid, liquid and gas phases 
S

ez , 
L

ez  and 
G

ez , and to the porosity of the solid phase e  by the 

relationships, 
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Note also that 
L

ez  is the volumetric moisture content 
e  and that the degree of saturation is 

e

L

e
e

z


  . 

The source terms 
P

neG ,  are each composed of four parts, a recharge/abstraction term, a degradation 

term, a phase change term, and a diffusion/dispersion term. The way in which LDAT evaluates the 

degradation term is described in (White and Beaven 2013). Since the effects of diffusion and 

dispersion are dealt with in the source terms, the assumption may be made in the flow algorithm that, 

for each phase, the velocity in a particular direction of each of the components in that phase is the 

same. 

For the liquid and gas phases the interstitial velocity P

emv  can be estimated using Darcy’s equation, 
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are the head gradients and P

emk  are the permeabilities of the waste in the em  direction, for 

the relevant liquid or gas components. The permeabilities may be expressed as, 
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E

e  is the effective degree of saturation which falls to zero when the actual degree of saturation, 
e , 

reaches the residual degree of saturation, 
R

e , for the material. 
MAX

e  is the maximum degree of 

saturation that the material can reach, 
MAX

e1  being related to the residual amount of trapped gas 

that will be retained by the material. 



P

emK  are the fully saturated hydraulic conductivity, and the permeability to gas in the absence of 

liquid, respectively.  E

e

P

RELk   are functions of effective leachate saturation, 
E

e , with values that lie 

between 0 and 1, and thus modify the values of P

emK  to allow for the impact on permeability of 

partially saturated conditions. 

The hydraulic conductivity of the waste in a saturated condition may be estimated using the empirical 

relationship between hydraulic conductivity and effective stress   (kN/m2) proposed by (Powrie and 

Beaven 1999). 
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L

REFK , REF  and   are empirical coefficients which will be sensitive to the condition and nature of 

the particular waste being modelled. Examples of evaluations of equation (5) are shown in Figure 2. 

vhk  is the ratio of vertical to horizontal permeability. 

In LDAT the effective stress,   (kPa), is calculated using, 

  GL pp   1  

where   is the total stress applied by the load due to overburden and any applied surface load per 

unit area, 
0 , or surface stress (kPa). 



 

 

 

 

 

 

 

 

 

 

 

Parameter Notation Units 
LMC2 

data1 

Example 

data2 

Hydraulic 

conductivity 

Reference permeability L

REFK  m/day 8.25 20 

Reference effective stress REF  kPa 40 40 

Power law index    -2.71 -2.71 

Surface stress 0  kPa 80 50 

 

1. Values used in (White and Beaven, 2013) 

2. Values used for the modelling example described in Section 3 

Figure 2 Parameters for saturated hydraulic conductivity, equation (5). 

The value of L

emK  may be adjusted for temperature through viscosity and density using the following 

approach, (Das 1983). If 
L

TREF 0,  and 
L

TREF 0,  are the reference density and viscosity at the 

temperature 
0T  at which the reference permeability 

L

TREFK
0,  in equation (5) has been measured, then 

the permeability to a liquid with density 
L

T  and viscosity 
L

T  is given by replacing L

REFK  in 

equation (5) by, 

L

T

L

T

L

TREF

L

TREFL

TREF

L

TREF KK








0

0

0

,

,

,,          (6) 

Equation (6) may also be used to estimate the gas permeability under conditions of gas saturation 

thus, 
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Examples of functional relationships between density and viscosity, and temperature and pressure are 

given in Table 1. 

Name Notation Formula Units 

Liquid viscosity L  40  T175ln  kg/m/day 

Gas viscosity G  1.264 + 0.004  20T  kg/m/day 

Liquid density L  1000  L

L Kpexp  kg/m3 

Gas density G     273 TRppm A

G  kg/m3 

 

 

 

 

 

Table 1 Density and viscosity as functions of temperature and pressure. 

When there is two phase flow and the material is partially saturated, the area of liquid flow reduces 

because of the presence of gas, and the permeability reduces because of capillarity effects.  

An analytical expression that covers both of these effects by evaluating the liquid phase relative 

permeability value, L

RELk  in equation (4), is derived by (van Genuchten 1980), 
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The corresponding expression for relative permeability to gas is 

   
G

G

G
E

e

E

e

G

RELk








2
1

11 







        (9) 

L  and 
G  are pore space geometry correlation coefficients proposed by (Mualem 1976). 

L  and 

G are related to the parameter   in the capillary pressure function proposed by van Genuchten, 

equation (16). Examples of the functions represented by equations (8) and (9) are given in Figure 3. 

Lp  liquid pressure kPa 

Gp  gas pressure kPa 

Ap  atmospheric pressure kPa 

T  temperature oC 

m  molecular weight kg/mole 

R  gas constant kN/(mole.oK) 

LK  liquid bulk modulus kPa 



 

 

 

 

 

 

 

 

 

Figure 3 Liquid and gas relative permeabilities equations (8) and (9) 
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, the head gradient, in Darcy’s equation (3) has two components, the phase pressure head 

gradient and the gravity induced head gradient in the vertical direction, 
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where,   ,1emf  :em pair of elements connected vertically, otherwise   0emf . 

P

E  is the phase effective liquid/gas density. If the gas and liquid phases are assumed to be fully 

mixed, the effective density for both phases will be, 

  GLG

E

L

E   1        (11) 

where   is the degree of saturation. 

However it is conceivable that the phases will not fully mix but will remain separate to a certain 

degree. Suppose that when the degree of saturation is  , the degree of saturation of the gas is actually 

G . This means that if the volume of gas present is 
GV , 

GGV  of the gas is replaced by liquid and 

the mass in the gas phase becomes  GLGGGG VV    

Thus the effective density of the fluid (liquid and/or gas) fraction controlled by the gas phase pressure 

is given by, 

  GGLGG

E   1        (12) 

The corresponding mass in the liquid volume 
LV , will become  GLGGLL VV    and, 
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Equations (12) and (13) give a range of gas and liquid effective densities from conditions where the 

phases are completely separated to fully mixed, as 
G  varies from 0 to  . 

This concept of effective density may be used in a modelling context by devising a simple algebraic 

functional relationship between 
G  and  . The relationship given by equations (14) and (15) is 

employed in LDAT. The characteristic shape of this relationship can be varied by choosing 

appropriate values for the parameters REF  and  . 
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An illustration of the impact of this function on the liquid and gas densities is given in Figure 4 for 

2.0REF  and 5 . The effect of this refinement analytically is that the two phases are treated as 

separate as far as density is concerned over the lower range of saturation but tend towards the fully 

mixed density values over the higher range of saturation. Fully mixed conditions, equation (11), are 

modelled throughout when 0REF  and 1 . Since no mixing takes place when REF  , fully 

separated conditions are modelled throughout when REF  is set equal to 1. For intermediate values of 

REF  the effective liquid and gas densities used to evaluate the vertical head gradients for each phase 

using equation (10) change from the separated values to the fully mixed values as   varies from 

REF  to 1. 

 

 

 

 

 

 

 

 

Figure 4 Effective liquid and gas densities 
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As will be seen in Section 3 the solution of equation (2) requires there to be a relationship between the 

liquid and gas pressure fields, Lp  and Gp . This is obtained from the capillary pressure 

LG

C ppp   which may be obtained by using the (van Genuchten 1980) expression relating 
Cp  to 

the effective degree of saturation, 
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In equation (16), as the value of   approaches the residual degree of saturation, and E  tends to 

zero, the capillary pressure becomes infinitely large. In LDAT to prevent the value of 
Cp  becoming 

unrealistically large it is capped at 100 kPa at a small value of E , MINE , 0.01. In equation (16) 
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1  so that the function has essentially four parameters  ,   R  and MAX . If the function is 

also constrained to cap the value of 
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Figure 5 Capillary pressure, equation (16) 

It is generally accepted that the shape of the relationship  E

Cp   will change depending on whether 

or not the material is in the process of increasing or decreasing in saturation (imbibing or draining). 

This hysteresis effect is very complicated and is not presently modelled in LDAT. 
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When equation (2) is written separately for the liquid and gas phases, and the resulting equations are 

added together to solve for the liquid and gas pressure fields, the term 
tt

z

t

z e
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
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 emerges. 

t

e




 is in fact the term that couples the liquid and gas phase equations to the solid phase and may be 

calculated using the Powrie and Beaven (1999) relationship for dry density 
D

e , Figure 6. 
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Figure 6 Dry density and porosity profiles 
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3. Finite difference algorithm for the liquid and gas flow sub-model 

The constitutive equations described in Section 2 are solved in LDAT within the framework of a two 

dimensional rectangular grid of constant volume elements that descretise the space occupied by the 

waste. Boundary conditions and initial conditions are prescribed for the concentrations of all of the 

compounds present, and the equations are solved numerically in time and space using the finite 

difference method. 

In each time step the sub-models which affect the source term, such as the bio-degradation and phase 

change algorithms, are run first to evaluate 
P

neG ,  in equation (2). These calculations are based on the 

conditions at the beginning of each time step whilst they should be based on conditions that are 

averaged over the time step. The error caused by this emerges as a volumetric error in that at the end 

of the time step, whilst the model mass balance is conserved, the volume of the contents of an 

element, 
eV  ,will be calculated to be different from the physical volume of the element, 

eV . This may 

be remedied by repeating the calculation in an iterative loop, or by adjusting the source term with a 

volume numerical correction term 
eee VVV   during the next time step, see equation (31). The 

latter approach is used in LDAT to avoid the excessive computation times caused by the iterative 

approach. 

To develop the finite difference algorithm for the liquid and gas flow sub-model, equations (3) and 

(10) are first substituted into equation (2). Equation (2) is a set of three groups of equations, one group 

for each phase, with each group containing the individual equations for each component n . By 

adding together the equations in the liquid and gas phase groups, and using equation (16), an overall 

flow equation for the gas pressure, Gp , may be obtained and solved numerically to give the transient 

gas pressure field. 

Once this has been done, the process is reversed to back calculate the liquid pressure field from 

equation (16) and the overall mass transfers in the system from equations (3) and (10). The individual 

compound concentrations and masses can then be obtained from a further back calculation using the 

equations represented by equations (1) and (2). The details of this derivation of the flow algorithm are 

as follows. 

The summation in the last term in equation (2) is first written in the following finite difference form, 
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Where, 
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and is calculated according to the fluid phase and the direction of flow; that is, if P

m

P

e hh   then 

P

e

P

em kk   otherwise P

m

P

em kk  . 
P

nem , , 
P

nemz ,  and P

emz  are treated similarly. P

eh  is the fluid phase head 

at the centre of element e . 

It is assumed that em

P

nemnem AzA ,,  . 

emA  is the area of the interface between elements e  and m . 

eml  is the absolute value of the distance between the centres of elements e  and m . 

Using equation (10) gives, 
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Thus in equation (19), 
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meem xxx   is the distance between the centres of elements e  and m  and is calculated taking 

into account sign and expressed as a positive or negative quantity. Note that 0 emx  when the 

elements e  and m  are not connected vertically. 

The densities P

em  and EP

em  are weighted values across the em  interface thus, 
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ed  and 
md  are the lengths of elements e  and m  in the em  direction. P

e  and EP

e  are the overall 

phase densities and overall effective phase densities in element e . 

Dealing with all of the terms in equation (2) we have, 
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Writing, 
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and summing equation (21) over the components in each phase, we can obtain the aggregated two 

fluid phase equations. 

Thus for the gas phase, 
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For the liquid phase, 
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Or using equation (16), LG

C ppp  , and assuming that 
Cp  is constant during the time increment, 
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Introducing for convenience the additional variables a  and b  equation (23) and (24) become, 
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These two phase equations are now combined, with use being made of the fact that  
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Also note that 
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e ppp  . Again for convenience we will now write G

ee pp   to obtain by 

adding equations (25) and (26), 
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The change in porosity term, 
eeV  is the term that decouples the flow equation from the solid phase 

equations that are used in the settlement sub-model of LDAT to calculate the transfers of the solid 

phase components in and out of a finite difference element. 
eeV  may be estimated using equation 

(18), e

S

ee pSz   . This approximation can result in a difference between the dry density 

calculated by the algorithm, D , and that calculated by equation (17) D . This can be corrected by 

adjusting the source term with a density numerical correction term   S

e

DD

e VV
D

  5.0 , 

see equation (31). 
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equation (30) becomes, 
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This is a set of linear equations, one for each element in the array, which over the time increment from 

t  to tt   may be solved for tt

ep   given t

ep , when appropriate boundary and initial conditions are 

specified. Substituting, 
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into equation (32) gives, 
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Equation (33) is a set of 
eN  equations corresponding to the number of active equations which may be 

written in matrix form where e  becomes the row number and i  is the column number being the 

element number corresponding to interface m  and obtained from an array mapping function 

 memaparrayi ,_ , see Figure 1. 
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Note that the total volumetric phase transfer across an interface em  in time t  is (positive outwards) 
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This is related to the mass transfer of phase component n  by, 
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Again positive outwards. 

The volume of the component n  transferred in time t  across the interface em  depends on the 

density in element e  or element m : 
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 for element m  

These volume transfer equations are used in LDAT to regulate the value of t  so that the changes in 

the overall phase volume in an element, and the volume numerical correction in equation (31), are 

limited to around 5% in any time step. This level has been found to produce stable calculations that 

balance the mass throughout the model and provide volumetric consistency. 
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